Lesson No. 5: Multiple Intelligences: Where Are Your Reading, Writing and Artistic Strengths?

Multiple Intelligences

How well do you know your basic, foundational talents? Have you ever really explored your natural gifts? Though standardized testing such as the IQ, GRE and SAT are rampant and useful for baseline and formalized testing, they ignore a great deal of natural intelligences and talents. The good news is that exploring your natural gifts more thoroughly through the lens of Multiple Intelligences will build your abilities and confidences not only in an individualized way, but also in a standardized testing environment. Unfortunately, most formal schooling environments, today, fall short in individualized explorations of student talents. For this reason, we are so glad you are here. This lesson seeks to help you more fully explore and realize your talents and intelligences. Let’s begin.

 

Multiple Intelligences: New Horizons in Theory and Practice

by Howard Gardner

…There is an alternative vision that I would like to present—one based on a radically different view of the mind, and one that yields a very different view of school. It is a pluralistic view of mind, recognizing many different and discrete facets of cognition, acknowledging that people have different cognitive strengths and contrasting cognitive styles. I introduce the concept of an “individual-centered school” that takes this multifaceted view of intelligence seriously. This model for a school is based in part on findings from sciences that did not even exist in Binet’s time: cognitive science (the study of the mind) and neuroscience (the study of the brain). One such approach I have called “the theory of multiple intelligences.” Let me tell you something about its sources and claims, and lay the ground work for the educational discussions in the chapters that follow….

 

Musical Intelligence

Left Brain Strengths: Words of Songs
Right Brain Strengths: Creativity, Imagination, Rhythm, Tunes

 

A brief consideration of the evidence suggests that musical skill passes the other tests for an intelligence. For example, certain parts of the brain play important roles in perception and production of music. These areas are characteristically located in the right hemisphere, although musical skill is not as clearly “localized,” or located in a specifiable area, as natural language. Although the particular susceptibility of musical ability to brain damage depends on the degree of training and other individual differences, there is clear evidence for “amusia,” or loss of musical ability….

 

When he was three years old, Yehudi Menuhin was smuggled into the San Francisco Orchestra concerts by his parents. The sound of Louis Persinger’s violin so entranced the youngster that he insisted on a violin for his birthday and Louis Persinger as his teacher. He got both. By the time he was ten years old, Menuhin was an international performer (Menuhin, 1977).

Violinist Yehudi Menuhin’s musical intelligence manifested itself even before he had touched a violin or received any musical training. His powerful reaction to that particular sound and his rapid progress on the instrument suggest that he was biologically prepared in some way for that endeavor. In this way evidence from child prodigies supports the claim that there is a biological link to a particular intelligence. Other special populations, such as autistic children who can play a musical instrument beautifully but who cannot otherwise communicate, underscore the independence of musical intelligence.

A brief consideration of the evidence suggests that musical skill passes the other tests for an intelligence. For example, certain parts of the brain play important roles in perception and production of music. These areas are characteristically located in the right hemisphere, although musical skill is not as clearly “localized,” or located in a specifiable area, as natural language. Although the particular susceptibility of musical ability to brain damage depends on the degree of training and other individual differences, there is clear evidence for “amusia,” or loss of musical ability.

Music apparently played an important unifying role in Stone Age (Paleolithic) societies. Birdsong provides a link to other species. Evidence from various cultures supports the notion that music is a universal faculty. Studies of infant development suggest that there is a “raw” computational ability in early childhood. Finally, musical notation provides an accessible and versatile symbol system. In short, evidence to support the interpretation of musical ability as an “intelligence” comes from many different sources. Even though musical skill is not typically considered an intellectual skill like mathematics, it qualifies under our criteria. By definition it deserves consideration; and in view of the data, its inclusion is empirically justified.

 

Bodily-Kinesthetic Intelligence

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

Left Brain Strengths: Sequencing
Right Brain Strengths: Creativity, Intuition, Touch, Movement, Rhythm, Arts (Motor Skills) 

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

 

Control of bodily movement is, of course, localized in the motor cortex, with each hemisphere dominant or controlling bodily movements on the contra-lateral side. In right handers, the dominance for such movement is ordinarily found in the left hemisphere….

 

Fifteen-year-old Babe Ruth was playing catcher one game when his team was taking a “terrific beating.” Ruth “burst out laughing” and criticized the pitcher loudly. Brother Mathias, the coach, called out, “All right, George, YOU pitch!” Ruth was stunned and nervous: “I never pitched in my life…I can’t pitch.” The moment was transformative, as Ruth recalls in his autobiography: “Yet, as I took the position, I felt a strange relationship between myself and that pitcher’s mound. I felt, somehow, as if I had been born out there and that this was a kind of home for me.” As sports history shows, he went on to become a great major league pitcher (and, of course, attained legendary status as a hitter) (Ruth, 1948, p. 17).

Like Menuhin, Babe Ruth was a prodigy who recognized his “instrument” immediately upon his first exposure to it. This recognition occurred in advance of formal training.

Control of bodily movement is, of course, localized in the motor cortex, with each hemisphere dominant or controlling bodily movements on the contra-lateral side. In right handers, the dominance for such movement is ordinarily found in the left hemisphere.

The ability to perform movements when directed to do so can be impaired even in individuals who can perform the same movements reflexively or on a non-voluntary basis. The existence of specific apraxia constitutes one line of evidence for a bodilykinesthetic intelligence.

The evolution of specialized body movements is of obvious advantage to the species, and in humans this adaptation is extended through the use of tools. Body movement undergoes a clearly defined developmental schedule in children; there is little question of its universality across cultures. Thus it appears that bodily-kinesthetic “knowledge” satisfies many of the criteria for an intelligence.

The consideration of bodily-kinesthetic knowledge as “problem solving” may be less intuitive. Certainly carrying out a mime sequence or hitting a tennis ball is not solving a mathematical equation. And yet, the ability to use one’s body to express an emotion (as in a dance), to play a game (as in a sport), or to create a new product (as in devising an invention) is evidence of the cognitive features of body usage. The specific computations required to solve a particular bodily-kinesthetic problem, hitting a tennis ball, are summarized by Tim Gallwey: In order to anticipate how and where to move the feet and whether to take the racket back on the forehand or backhand side, the brain must calculate within a fraction of a second the moment the ball leaves the server’s racket approximately where it is going to land, and where the racket will intercept it. Into this calculation must be computed the initial velocity of the ball, combined with an input for the progressive decrease in velocity and the effect of wind and of spin, to say nothing of the complicated trajectories involved. Then, each of these factors must be recalculated after the bounce of the ball to anticipate the point where contact will be made by the racket. Simultaneously, muscle orders must be given—not just once, but constantly refined on updated information. Finally, the muscles have to respond in cooperation with one another… Contact is made at a precise point that depends on whether the order was given to hit down the line or cross-court, an order not given until after a split-second analysis of the movement and balance of the opponent….Even if you are returning the serve of an average player, you will have only about one second. Just to hit the ball is clearly a remarkable feat; to return it with consistency and accuracy is a mind-boggling achievement. Yet it is not uncommon. The truth is that everyone who inhabits a human body possesses a remarkable instrument (Gallwey, 1976, pp. 33-34).

 

Logical-Mathematical Intelligence

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

Left Brain Strengths: Problem Solving, Analysis, Sequencing, Linear, Mathematics, Facts, Computation
Right Brain Strengths: Creativity, Imagination (Think Quantum Physics)

 

Along with the companion skill of language, logical-mathematical reasoning provides the principal basis for IQ tests. This form of intelligence has been thoroughly investigated by traditional psychologists, and it is the archetype of “raw intelligence” or the problemsolving faculty that purportedly cuts across domains. It is perhaps ironic, then, that the actual mechanism by which one arrives at a solution to a logical-mathematical problem is not as yet completely understood—and the processes involved in leaps like those described by McClintock remain mysterious….

 

In 1983 Barbara McClintock won the Nobel Prize in Medicine or Physiology for her work in microbiology. Her intellectual powers of deduction and observation illustrate one form of logical-mathematical intelligence that is often labeled “scientific thinking.” One incident is particularly illuminating. While a researcher at Cornell in the 1920s, McClintock was faced one day with a problem: while theory predicted 50 percent pollen sterility in corn, her research assistant (in the “field”) was finding plants that were only 25 to 30 percent sterile. Disturbed by this discrepancy, McClintock left the cornfield and returned to her office where she sat for half an hour, thinking: Suddenly I jumped up and ran back to the (corn) field. At the top of the field (the others were still at the bottom) I shouted, “Eureka, I have it! I know what the 30% sterility is!”… They asked me to prove it. I sat down with a paper bag and a pencil and I started from scratch, which I had not done at all in my laboratory. It had all been done so fast; the answer came and I ran. Now I worked it out step by step—it was an intricate series of steps—and I came out with [the same result]. [They] looked at the material and it was exactly as I’d said it was; it worked out exactly as I had diagrammed it. Now, why did I know, without having done it on paper? Why was I so sure? (Keller, 1983, p. 104).

This anecdote illustrates two essential facts of the logical-mathematical intelligence.

First, in the gifted individual, the process of problem solving is often remarkably rapid— the successful scientist copes with many variables at once and creates numerous hypotheses that are each evaluated and then accepted or rejected in turn. The anecdote also underscores the nonverbal nature of the intelligence. A solution to a problem can be constructed before it is articulated. In fact, the solution process may be totally invisible, even to the problem solver. This phenomenon need not imply, however, that discoveries of this sort—the familiar “aha!”—are mysterious, intuitive, or unpredictable. The fact that it happens more frequently to some people (e.g. Nobel Prize winners) suggests the opposite. We interpret this as the work of the logical-mathematical intelligence.

Along with the companion skill of language, logical-mathematical reasoning provides the principal basis for IQ tests. This form of intelligence has been thoroughly investigated by traditional psychologists, and it is the archetype of “raw intelligence” or the problemsolving faculty that purportedly cuts across domains. It is perhaps ironic, then, that the actual mechanism by which one arrives at a solution to a logical-mathematical problem is not as yet completely understood—and the processes involved in leaps like those described by McClintock remain mysterious.

Logical-mathematical intelligence is supported as well by empirical criteria. Certain areas of the brain are more prominent in mathematical calculation than others; indeed recent evidence suggests that the linguistic areas in the frontotemporal lobes are more important for logical deduction, the visuospatial areas in bilateral parietofrontal lobes for numerical calculation (Houde & Tzourio-Mazoyer, 2003). There are savants who perform great feats of calculation even though they remain tragically deficient in most other areas.

Child prodigies in mathematics abound. The development of this intelligence in children has been carefully documented by Jean Piaget and other psychologists.

 

Linguistic Intelligence

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

Left Brain Strengths: Syntax, Diction, Linguistics
Right Brain Strengths: Creativity, Imagination, Holistic Thinking

 

As with the logical intelligence, calling linguistic skill an “intelligence” is consistent with the stance of traditional psychology. Linguistic intelligence also passes our empirical tests. For instance, a specific area of the brain, called Broca’s Area, is responsible for the production of grammatical sentences. A person with damage to this area can understand words and sentences quite well but has difficulty putting words together in anything other than the simplest of sentences. At the same time, other thought processes may be entirely unaffected….

 

At the age of ten, T. S. Eliot created a magazine called Fireside to which he was the sole contributor. In a three-day period during his winter vacation, he created eight complete issues. Each one included poems, adventure stories, a gossip column, and humor. Some of this material survives, and it displays the talent of the poet (see Soldo, 1982).

As with the logical intelligence, calling linguistic skill an “intelligence” is consistent with the stance of traditional psychology. Linguistic intelligence also passes our empirical tests. For instance, a specific area of the brain, called Broca’s Area, is responsible for the production of grammatical sentences. A person with damage to this area can understand words and sentences quite well but has difficulty putting words together in anything other than the simplest of sentences. At the same time, other thought processes may be entirely unaffected.

The gift of language is universal, and its rapid and unproblematic development in most children is strikingly constant across cultures. Even in deaf populations where a manual sign language is not explicitly taught, children will often “invent” their own manual language and use it surreptitiously! We thus see how an intelligence may operate independently of a specific input modality or output channel.

 

Spatial Intelligence

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

Left Brain Strengths: Spatial Mathematics (Geometry), Analysis, Sequencing
Right Brain Strengths: Visualization, Creativity, Imagination, Arts

 

Spatial problem solving is required for navigation and in the use of the notational system of maps. Other kinds of spatial problem solving are brought to bear in visualizing an object seen from a different angle and in playing chess. The visual arts also employ this intelligence in the use of space….

 

Navigation around the Caroline Islands in the South Seas is accomplished by native sailors without instruments. The position of the stars, as viewed from various islands, the weather patterns, and water color are the principal sign posts.

Each journey is broken into a series of segments; and the navigator learns the position of the stars within each of these segments. During the actual trip the navigator must envision mentally a reference island as it passes under a particular star. From that he computes the number of segments completed, the proportion of the trip remaining, and any corrections in heading that are required. The navigator cannot see the islands as he sails along; instead he maps their locations in his mental “picture” of the journey (see Gladwin, 1970).

Spatial problem solving is required for navigation and in the use of the notational system of maps. Other kinds of spatial problem solving are brought to bear in visualizing an object seen from a different angle and in playing chess. The visual arts also employ this intelligence in the use of space.

Evidence from brain research is clear and persuasive. Just as the middle regions of the left cerebral cortex have, over the course of evolution, been selected as the site of linguistic processing in right-handed persons, the posterior regions of the right cerebral cortex prove most crucial for spatial processing. Damage to these regions causes impairment of the ability to find one’s way around a site, to recognize faces or scenes, or to notice fine details.

Blind populations provide an illustration of the distinction between the spatial intelligence and visual perception. A blind person can recognize shapes by an indirect method: running a hand along the object translates into length of time of movement, which in turn is translated into the size of the object. For the blind person, the perceptual system of the tactile modality parallels the visual modality in the seeing person. The analogy between the spatial reasoning of the blind and the linguistic reasoning of the deaf is notable.

There are few child prodigies among visual artists, but there are savants like Nadia (Selfe, 1977). Despite a condition of severe autism, this preschool child made drawings of the most remarkable representational accuracy and finesse.

 

Interpersonal Intelligence

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

Left Brain Strengths: Analysis, Sequencing, Computation
Right Brain Strengths: Holistic Thinking, Intuition, Feelings

 

Interpersonal intelligence builds on a core capacity to notice distinctions among others—in particular, contrasts in their moods, temperaments, motivations, and intentions. In more advanced forms, this intelligence permits a skilled adult to read the intentions and desires of others, even when they have been hidden….

 

With little formal training in special education and nearly blind herself, Anne Sullivan began the intimidating task of instructing a blind and deaf seven-year-old, Helen Keller. Sullivan’s efforts at communication were complicated by the child’s emotional struggle with the world around her. At their first meal together, this scene occurred: Annie did not allow Helen to put her hand into Annie’s plate and take what she wanted, as she had been accustomed to do with her family. It became a test of wills—hand thrust into plate, hand firmly put aside. The family, much upset, left the dining room. Annie locked the door and proceeded to eat her breakfast while Helen lay on the floor kicking and screaming, pushing and pulling at Annie’s chair. [After half an hour] Helen went around the table looking for her family. She discovered no one else was there and that bewildered her. Finally, she sat down and began to eat her breakfast, but with her hands. Annie gave her a spoon. Down on the floor it clattered, and the contest of wills began anew (Lash, 1980, p. 52).

Anne Sullivan sensitively responded to the child’s behavior. She wrote home: “The greatest problem I shall have to solve is how to discipline and control her without breaking her spirit. I shall go rather slowly at first and try to win her love.” In fact, the first “miracle” occurred two weeks later, well before the famous incident at the pump house. Annie had taken Helen to a small cottage near the family’s house, where they could live alone. After seven days together, Helen’s personality suddenly underwent a change—the therapy had worked: “My heart is singing with joy this morning. A miracle has happened! The wild little creature of two weeks ago has been transformed into a gentle child” (Lash, 1980, p. 54).

It was just two weeks after this that the first breakthrough in Helen’s grasp of language occurred; and from that point on, she progressed with incredible speed. The key to the miracle of language was Anne Sullivan’s insight into the person of Helen Keller.

Interpersonal intelligence builds on a core capacity to notice distinctions among others—in particular, contrasts in their moods, temperaments, motivations, and intentions. In more advanced forms, this intelligence permits a skilled adult to read the intentions and desires of others, even when they have been hidden. This skill appears in a highly sophisticated form in religious or political leaders, salespersons, marketers, teachers, therapists, and parents. The Helen Keller-Anne Sullivan story suggests that this interpersonal intelligence does not depend on language. All indices in brain research suggest that the frontal lobes play a prominent role in interpersonal knowledge. Damage in this area can cause profound personality changes while leaving other forms of problem solving unharmed— after such an injury, a person is often not the “same person.” Alzheimer’s disease, a form of presenile dementia, appears to attack posterior brain zones with a special ferocity, leaving spatial, logical, and linguistic computations severely impaired. Yet, Alzheimer’s patients will often remain well groomed, socially proper, and continually apologetic for their errors. In contrast, Pick’s disease, another variety of presenile dementia that is localized in more frontal regions of the cortex, entails a rapid loss of social graces.

Biological evidence for interpersonal intelligence encompasses two additional factors often cited as unique to humans. One factor is the prolonged childhood of primates, including the close attachment to the mother. In those cases where the mother (or a substitute figure) is not available and engaged, normal interpersonal development is in serious jeopardy. The second factor is the relative importance in humans of social interaction. Skills such as hunting, tracking, and killing in prehistoric societies required participation and cooperation of large numbers of people. The need for group cohesion, leadership, organization, and solidarity follows naturally from this.

 

Intrapersonal Intelligence

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

Left Brain Strengths: Analysis, Sequencing, Computation
Right Brain Strengths: Creativity, Holistic Thinking, Intuition, Feelings, Daydreaming

 

…intrapersonal intelligence—knowledge of the internal aspects of a person: access to one’s own feeling life, one’s range of emotions, the capacity to effect discriminations among these emotions and eventually to label them and to draw upon them as a means of understanding and guiding one’s own behavior. A person with good intrapersonal intelligence has a viable and effective model of himself or herself—one that would be consistent with a description constructed by careful observers who know that person intimately. Since this intelligence is the most private, it requires evidence from language, music, or some other more expressive form of intelligence if the observer is to detect it at work….

 

In an essay called “A Sketch of the Past,” written almost as a diary entry, Virginia Woolf discusses the “cotton wool of existence”—the various mundane events of life. She contrasts this “cotton wool” with three specific and poignant memories from her childhood: a fight with her brother, seeing a particular flower in the garden, and hearing of the suicide of a past visitor:

These are three instances of exceptional moments. I often tell them over, or rather they come to the surface unexpectedly. But now for the first time I have written them down, and I realize something that I have never realized before.

Two of these moments ended in a state of despair. The other ended, on the contrary, in a state of satisfaction.

The sense of horror (in hearing of the suicide) held me powerless. But in the case of the flower, I found a reason; and was thus able to deal with the sensation. I was not powerless.

Though I still have the peculiarity that I receive these sudden shocks, they are now always welcome; after the first surprise, I always feel instantly that they are particularly valuable. And so I go on to suppose that the shock-receiving capacity is what makes me a writer. I hazard the explanation that a shock is at once in my case followed by the desire to explain it. I feel that I have had a blow; but it is not, as I thought as a child, simply a blow from an enemy hidden behind the cotton wool of daily life; it is or will become a revelation of some order; it is a token of some real thing behind appearances; and I make it real by putting it into words (Woolf, 1976, pp. 69-70).

This quotation vividly illustrates the intrapersonal intelligence—knowledge of the internal aspects of a person: access to one’s own feeling life, one’s range of emotions, the capacity to effect discriminations among these emotions and eventually to label them and to draw upon them as a means of understanding and guiding one’s own behavior. A person with good intrapersonal intelligence has a viable and effective model of himself or herself—one that would be consistent with a description constructed by careful observers who know that person intimately. Since this intelligence is the most private, it requires evidence from language, music, or some other more expressive form of intelligence if the observer is to detect it at work. In the above quotation, for example, linguistic intelligence serves as a medium in which to observe intrapersonal knowledge in operation.

We see the familiar criteria at work in the intrapersonal intelligence. As with the interpersonal intelligence, the frontal lobes play a central role in personality change.

Injury to the lower area of the frontal lobes is likely to produce irritability or euphoria; while injury to the higher regions is more likely to produce indifference, listlessness, slowness, and apathy—a kind of depressive personality. In such “frontal-lobe” individuals, the other cognitive functions often remain preserved. In contrast, among aphasics who have recovered sufficiently to describe their experiences, we find consistent testimony: while there may have been a diminution of general alertness and considerable depression about the condition, the individual in no way felt himself to be a different person. He recognized his own needs, wants, and desires and tried as best he could to achieve them.

The autistic child is a prototypical example of an individual with impaired intrapersonal intelligence; indeed, the child may not even be able to refer to himself. At the same time, such children may exhibit remarkable abilities in the musical, computational, spatial, mechanical and other non-personal realms.

Evolutionary evidence for an intrapersonal faculty is more difficult to come by, but we might speculate that the capacity to transcend the satisfaction of instinctual drives is relevant. This potential becomes increasingly important in a species not perennially involved in the struggle for survival. The neural structures that permit consciousness probably form the basis on which self-consciousness is constructed.

In sum, then, both interpersonal and intrapersonal faculties pass the tests of an intelligence. They both feature problem-solving capacities with significance for the individual and the species. Interpersonal intelligence allows one to understand and work with others. Intrapersonal intelligence allows one to understand and work with oneself. In the individual’s sense of self, one encounters a melding of interpersonal and intrapersonal components. Indeed, the sense of self emerges as one of the most marvelous of human inventions—a symbol that represents all kinds of information about a person and that is at the same time an invention that all individuals construct for themselves.

 

Newly Identified Intelligences: Naturalist and Existential

from Multiple Intelligences: New Horizons in Theory and Practice 
by Howard Gardner

For the first ten years after I proposed the theory of multiple intelligences, I resisted any temptation to alter the theory. Many individuals proposed candidate intelligences— humor intelligence, cooking intelligence, sexual intelligence. One of my students quipped that I would never recognize those intelligences, because I lacked them myself.

Two events impelled me to consider additional intelligences. Once I spoke about the theory to a group of historian of scientists. After the conclusion of my talk, a short, elderly man approached and said, “You will never explain Charles Darwin with the set of intelligences that you proposed.” The commentator was none other than Ernst Mayr, probably Darwin’s successor as the most important 20th century authority on evolution.

The other event was the frequent assertion that there was a spiritual intelligence, and the occasional assertion that I had identified a spiritual intelligence. In fact, neither statement was true. But these experiences motivated me to consider whether there is evidence for either a naturalist or a spiritual intelligence.

This inquiry led to very different conclusions. In the first case, the evidence for the existence of a naturalist intelligence is surprisingly persuasive. Human beings like biologists Charles Darwin or E. O. Wilson and ornithologists like John James Audubon or Roger Tory Peterson excel at the capacity to identify one species from another. An individual with a high degree of naturalist intelligence is keenly aware of how to distinguish from one another the diverse, plants, animals, mountains, and cloud configurations in her ecological niche. While we tend to think of these capacities as visual, the recognition of birdsong or whale calls entails auditory perception. The Dutch naturalist Geermat Vermij, who is blind, depends on his sense of touch.

On the eight criteria of an intelligence, the naturalist intelligence scores well. There are the core capacities to recognize instances as members of a species; the evolutionary history where survival often depends on recognizing conspecifics and on avoiding predators; young children easily make distinctions in the naturalist world—indeed, some five-year-olds are better at distinguishing among dinosaur species than are their parents or grandparents.

When one assumes the cultural or brain lenses, interesting phenomena emerge.

Nowadays, few persons in the developed world are directly dependent on naturalist intelligence. We simply go to the grocery store or order groceries on the phone or via the Internet. And yet I suggest that our entire consumer culture is based on the naturalist intelligence. Those are the capacities on which we draw when we are drawn to one car rather than another, or when we select for purchase one pair of sneakers or gloves rather than another.

The study of brain damage provides intriguing evidence of individuals who are able to recognize and name inanimate objects but who lose the capacity to identify living things; less often, one encounters the opposite pattern, where individuals are able to recognize and name animate entities but fail with artificial (man-made) objects. It is probably the case that these capacities entail different perceptual mechanisms (Euclidean geometry operates in the world of artifacts but not in the world of nature) and different experiential bases (we operate on inanimate objects and tools in ways quite different from the ways that we interact with living beings).

My review of the evidence on spirituality proved less straightforward. Individuals have very strong views on religion and spirituality, particularly in the contemporary United States. For many people, experiences of the spirit are the most important ones; they assume that a spiritual intelligence not only exists but represents the highest achievement of human beings. Still others, and particularly those of a scientific bent, cannot take seriously any discussion of the spirit or the soul; it smacks of mysticism. And they may be deeply skeptical about God and religion—especially so in the academy.

Asked why I did not instantly endorse a spiritual or religious intelligence, I once quipped, “If I did so, it would please my friends—but it would please my enemies even more!” Quips are no substitute for scholarship. I devoted the better part of a year to reviewing the evidence for and against a spiritual intelligence. I concluded that at least two facets of spirituality were quite remote from my conception of an intelligence. First, I do not believe that an intelligence should be confounded with an individual’s phenomenological experience. For most observers, spirituality entails a certain set of visceral reactions—for example, a feeling that one is in touch with a higher being or “at one” with the world.

Such feelings may be fine, but I do not see them as valid indicators of an intelligence. A person with a high degree of mathematical intelligence may undergo feelings of “flow” when she solves a difficult problem. But she is equally mathematically intelligent even if she reports no such phenomenological reaction.

Second, for many individuals, spirituality is indissociable from a belief in religion/God generally, or even from allegiance to a particular faith or sect. “Only a real Jew/Catholic/Muslim/Protestant is a spiritual being” is the explicit or implicit message.

This requirement makes me uncomfortable and takes us far from the initial set of criteria for an intelligence.

But if a spiritual intelligence does not qualify on my criteria, one facet of spirituality seems a promising candidate. I call it the existential intelligence—sometimes described as “the intelligence of big questions.” This candidate intelligence is based on the human proclivity to ponder the most fundamental questions of existence. Why do we live? Why do we die? Where do we come from? What is going to happen to us? What is love? Why do we make war? I sometimes say that these are questions that transcend perception; they concern issues that are too big or too small to be perceived by our five principal sensory systems.

Somewhat surprisingly, the existential intelligence does reasonably well in terms of our criteria. Certainly, there are individuals—philosophers, religious leaders, the most impressive statesman—who come to mind as high-end embodiments of existential intelligence. Existential issues arise in every culture—in religion, philosophy, art, and the more mundane stories, gossip, and media presentations of everyday life. Certainly, in any society where questioning is tolerated, children raise these existential questions from an early age—though they do not always listen acutely to the answers! Moreover, the myths and fairy tales that they gobble up speak to their fascination with existential questions.

My hesitation in declaring a full-blown existential intelligence comes from the dearth, so far, of evidence that parts of the brain are concerned particularly with these deep issues of existence. It could be that there are regions—for example, in the inferotemporal lobe—that are particularly crucial for dealing with the Big Questions. However, it is also possible that existential questions are just part of a broader philosophical mind—or that they are simply the more emotionally laden of the questions that individuals routinely pose. In the latter instances, my conservative nature dictates caution in giving the ninth place of honor to existential intelligence. I do mention this candidate intelligence in passing, but, in homage to a famous film by Federico Fellini, I shall continue for the time being to speak of “8 ó Intelligences” (Multiple Intelligences: New Horizons in Theory and Practice by Howard Gardner).